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Abstract

Polyhedral meshes consisting of triangles, quads, and pentagonpaadconfigurations cover all major sam-
pling and modeling scenarios. We give an algorithm for efficient local, lfreonversion of such meshes to an
everywhere smooth surface consisting of low-degree polynomiakpi@cadrilateral facets with 4-valent vertices
are ‘regular’ and are mapped to bi-cubic patches so that adjacentubigs join @ as for cubic tensor-product
splines. The algorithm can be implemented in the vertex and geometryrsiodidee GPU pipeline and does not
use the fragment shader. Its implementation in DirectX 10 achieves ciongius rendering at 659 frames per
second with 42.5 million triangles per second on input of a model of 13@daf which 60% are not regular.

Categories and Subject Descript@scording to ACM CCS) |.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Motivation satisfy connectivity or quad-layout constrainBolar con-

figurations that is closed triangle fans whose outer vertices
have valence 4 and central vertex has arbitrary (possibly
large) valence, naturally model features such as finger tips
and eyes (Figures 1, 2). This paper gives a local, parallel al-

/

@) (b)

Figure 1: Transition of feature lines.(a,b) Axe handle de-
tail (see Figure 12) using a triangle and a pentagon to tran-
sition between detailed and coarser areas. (c) Polar configu-
rations naturally terminate parallel feature lines along elon-
gations, like fingers.

Compared to pure quad meshes, meshes allowing for tri- g6 2 A quaditri/pent modetonverted to a smooth sur-
angles, quadrilaterals, and pentagons and polar configura-¢,.q consisting of bi-cubic patchege{low), polar patches

tions simplify remeshing of scanned data and enrich the (orangd, and Ry-patches m= 3 (green), m= 4 (red), m=5
design space for control meshes of smooth surfaces: while (.- Cf. Fig. 13. ' '

quads naturally model the flow of (parallel) feature lines and

are therefore the main facet type in many models, triangu-

lar facets allow merging lines while pentagonal facets allow gorithm and describes its GPU implementation to automat-
starting new lines without creating T-corners (as illustrated ically convert such a general polyhedral mesh into a piece-
in Figure 1) or forcing refinement of intermediate models to wise polynomial surface
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that isC? everywhere an€? in regular regions that are
converted to bi-cubic patches; and,

consists of one patch for each triangle, quad, or pentagon
in the mesh regardless of vertex valence; there is no need
for preprocessing to isolate mesh points of different va-
lence or to convert all facets into one facet type;

is computed using only local mesh context so that the sur-
faces can be constructed and rendered in parallel on the
GPU at high frame rates.

# coeffs | [LSO08] [NYM *08] our method
triangle 25x3=75 24x3=172 13 0r19
pentagon| 25x5=125| 24x5=120 | 31

Table 1: Number of control points pen-gon. Converting
triangles and pentagons directly avoids a control-point am-
plifying subdivision step needed to apply [LS08, N'OB].

The advantage of not having to refine quad-dominant meshes
[LKHO8] to pure quad meshes is evident in Table 1; and sim-
ple T-corners in quad-dominant meshes can be replaced by
5-sided facets. We limit the facets to triangles, quads and
pentagons due to current GPU constraints (see Section 8).

Section 3 introduces the patch representations, Section 4
the (continuity) constraints that imply the construction rules
and Section 5 gives these rules explicitly, inside boxes, so
that they are easy to implement. Section 6 explains an im-
plementation on the GPU. The electronic Appendix explic-
itly verifies the correctness of the formulas and displays a
gallery of configurations testing the surface quality.

2. Related Literature

Catmull-Clark subdivision [CC78] is an accepted standard
for mesh smoothing. Techniques evaluating or approximat-
ing its limit surface such as [Sta98, BS02, Bun05, SJPO05,
Pet00] require separation of extraordinary vertices (those
with valence+# 4) to construct their data structures or re-
duce the number of cases, quadrupling the number of facets
in the mesh. The constructions in [LS08, NY®B] do not

require such separation and have been implemented on the

GPU at high frame rates: [LS08] yields bi-cul@i® surfaces
with surrogate tangent patches for consistent lighting (see
also [VPBMO01]; and [BS07] for once CPU-refined Loop
meshes); [NYM08] generate§1 surfaces that approximate
Catmull-Clark surfaces well. For quad meshes, our construc-
tion reduces to [NYMO08].

[SLO3, PS04, SWO05] accept both triangles and quads and
thereby avoid additional CPU subdivision into quad-only
meshes; but we are unaware of efficient GPU implementa-
tions of these algorithms. The advantage of supporting po-
lar configurations for high-valent vertices has been demon-
strated in [MKPO7]. We reinterpret this construction to fit
GPU constraints.
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3. Patch construction types
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Figure 3: Mesh-to-patch conversionThe input mesht¢p)

is converted to patched@ttom) as follows. (a) An ordinary
facet is converted to a bi-cubic patch with 16 control points
gij. (b) Every triangle in polar configuration becomes a sin-
gular bi-cubic patch represented by 13 control pointgc)

An extraordinary facet with m sides is converted tong P
patch defined bgm+ 1 control points shown as. The -
patch is equivalent to m tconnected degree-4 triangular
patches', i = 0...m-1, having cubic outer boundaries.

We have three classes of facets in our input mesh:

1. Ordinary. quads with all vertices having valence 4.

2. Polar: triangles in polar configurations.

3. Extraordinary triangles, pentagons, and those quads that
are not ordinary facets due to vertex valence.

Ordinary & Polar:

We convert ordinary quads and polar triangles to tensor-
product degree bi-3 patches in Bernstein-Bézier form (BB-
form),

e <, (3 3-ii(3 3-jyi
g(u,v) -*_ZO_ZOQU <i>(1_u) u <J->(1_V) v,
i=0j=

defined by only 4< 4 BB-coefficients;j € R3. The coeffi-
cients are indexed as in Figure 3(a). Since the edge 03—33
of the polar patch is collapsed to one vertex, the polar patch
h is defined by 13 BB-coefficientsj ¢ R3 (Figure 3(b)).

Extraordinary:

An extraordinary facet witn sides is converted into Bn-
patch. APn-patch is a piecewise degre&& spline patch
with m boundaries of degree 3. Ry-patch is defined by
6m+ 1 control points indicated as in Figures 3(c),4(a).
That is, thePm-patch corresponding to a triangular, quadri-
lateral or pentagonal facet is defined by a total of 19, 25 or
31 points, respectively.

For evaluation, we can write th¥® sector of &Pm-patchin
triangular BB-form of total-degree 4 (Figure 3(b) and (c)),

b(u,v) ;= bii 1
(u,v) i+j;<:4 ik ®
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Figure 4: Sector of aPp-patch. The triangularsectorsare zﬁ 3&1
listed in counter-clockwise order with a modulo-m super- . 00 O
script. (a) 14 control points from three consecutive sectors of VO=blg,  t0=Dag vi=bl,q
a Rrn-patch define (b) a single patch in triangular BB-form
via relations(2) and (3). Ot

Figure 5. Internal Pm-patch constraintsThe isotropic é

constraint at the patch centbtm(red arrows, see Equation
where the(*}?) BB-coefficientsbij, € R3indexed asin Fig-  (4)) is propagated to the verta®) = bl The tangent coef-
ure 4(b) are computed from the 14 coefficients labeled in ficientstg andt; correspond to consecutive external bound-
4(a) by simple averaging, namely aries of the R-patch; t_; belongs to the neighbor patch

; 1
1. degree-raising the cubic boundary across the horizontal edgé), v

[ba00; D310, 0220, b130, Doad) = 2
, i i i i i i )
[b5300, b3oo +43b210, b210J2r b120, 3b120: b03°, bo3g) relation is equivalent to
2. and computing the shared BB-coefficients on the sector boos = klbi103+ ko (bi013+ b&g%) , (5)

boundariedl_| 01+ = b03 1141 forl=0,1,2,3 corre-
sponding to indices 301, 202, 103 and 004 in Figure 4(b), i.e. relation (3) fol = 3. To obtain an internallg* Pm-patch,

from theC! constraints (cf. Section 4.1 below): itis necessary and sufficient to enforce this relation along the
o 1 internal sector boundaries:
cm:=C0S—, l:i=1—cm, ko= ki:=1—2k, i i
m 2 2(1—cm) (b3 0111 —bs-10)) = (6)
. . . B i—1 H H j— i
b3 0141 :=Kiba_j o1 +k2 <b'37|.1,| + b'1,37|,|> ;) (b3—1.11 — b .01) + (Big" ) — b1 0))

The relation holds due to the assignment (3)fer0, 1,2, 3.
4. Smoothness constraints

In this section, we motivate the smoothness constraints that 4.2, Smoothness acr oss patches
define Pm-patches. The challenge in choosing the smooth-
ness constraints is threefold: (i) to guarantee solvability for
the coefficients of the patches and their layout, (ii) to arrive
at simple formulas for the construction and (iii) to obtain S
rules that obey the topology and reflect the geometry of the W'thl respect to thek parameter (Flgure 6lef). Then
input mesh. Section 4.1 examines the irfsapatch bound- 910 (0 0) = 3(to — v°) = 4(b, 10~V %) atv? in the direc-
aries emanating from the center of the patch to each of its iOn of v'; and similarly, :ﬂl —v0) = (b130 —V°). Foran
comners, and Section 4.2 addresses the boundary between adunbiased choice df andn® the valence at®,

jacent patches.
lacentp 2cr0(to —v°) = (t1 —V0) + (t_1 —\°). 7)

must hold. By relation (6) at°, i.e. forl =0

At VO, the internalC! constraints merge with thé® con-
straints across facet edges. We focus onRheatch edge
from v to vi. Let ak be the partial derivative operator

4.1. Internal Pn-patch smoothness

Figure 5 illustrates the transition between two sectors of the Bi (b301 vO) = (tg—VO) + (t1 —VO). (8)
Pm-patch. At the central point of th@n-patch, the unbiased
choice of tangents implies Eliminating (t; — v°) between (8) and (7) yields

2cm(b03— bhoa) = (blo3 — bboa) + (b55 —bhoa). (4 8, |
m(b103— boos) = (b103 —Pooa) + (b103—boos).  (4) 1 VO = (14 2en)(to —V0) - gu(b'zorvo)- ©)
Hereunbiasedmeans that the construction does not depend

on which corner we choose for the starting index. By el- If, in parti‘cularvO andv! are the endpoints of the cubic
ementary transformation, and noting th%g_gf b103’ this boundaryb'(u,0) = g(0,u) between a bi-cubic patapand

submitted tdEurographics Symposium on Geometry Processing (2008



4 A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Sotto Surfaces from Meshes with Tri/Quad/Pent Facets

9 Sy
i diele
by P
07 TN
FL\./
2 J B .Y
gw.)
01 (@) (b) (c)
Figure 6: Derivatives along adjacent patchedeft) The Figure7: Algorithm Overview(a) Tri/quad/pent input mesh
Pm-patch-ordinary and right) Pm-patch-Rs-patch bound- with verticesp;. (b) Per-vertex computation generating co-
aries.dy differentiates with respect to th&'kparameter. efficientsv', tj andf;. (c) Per-facet computation generating

internal coefﬁuentsbzn, b121, b 110 @nd b004 (purple).

P3j+1=P3j+3

aPm-patchb' thenn® = 4 hencec,o = 0; and at(0,0) corre-
sponding to/°,

919(0,0) = 3(t_1 —V°), 92b'(0,0) = 4(b30; —\°).
Then (9) simplifies to
919(0,0) = d1b'(0,0) — 2d2b' (0,0) (10)

. P3j+3
P3j+1=P3j+2

This defines the first constraint of ti@" conditions (112).
The analogous constraint &t needs to be recast so that
the direction of the derivative is consistent with the con-
straint atv®, resulting in the linearly blended left hand side @)
(1— 2cmu) d1b' (u,0) of theG* conditions

i ; Figure8: Per-vertex input(a) When every facet at the mesh

i _ i

(1—2emu)01b'(u,0) = 2092 (u,0) +919(0,u).  (11) point p. is 5-sided, we nee@n indices. (b) Triangles and

guads are redundantly indexed.

When aPm,-patch sectob meets aPm,-patch sectoa
(Figure 6,right), we need to replace_; — VO by the substi-
tution analogous to (8). The result are the scplarweights
in the G conditions

£(u)91b(u,0) = pdzb(u, 0) +vosa0.u),  (12) simple generic formulas and does not result in noticeable
where overhead for the GPU implementation (see Section 6.1). For
i each edge emanating from the, there is one scalar to sup-

Hi=1—cm, Vi=1—cm, & :=1+c,, port creases.

. 20 4. 1
0w = ((-lo+uly), lo:=¢", ly:=20—E. At each vertex. of the input mesh, we compute (see Fig-
ure 9) a corresponding poiat(by default the Catmull-Clark
5. Construction limit point) and face vertice$; positioned according to the

The patches are constructed in two stages (that will corre- well-known B-spline-to-BB-form conversion formulas:

spond to shaders in the GPU implementation) and that are
summarized in Figure 7. The algorithm can be implemented
using only the boxed formulas in this section.

P3j« := (P3j+1+P3j+2) /2

1
fi=3 (4ps + 2(p3j + P3j+3) + P3j« )
5.1. Per-vertex computation 1 not

The first stage computes local information around a vertex v n(n+5) j;, (ng +n 4)p*) (13)
p«. For consistent labeling irrespective of the numbenf

surrounding facets or their numbmarof sides, we use indices
pj as labeled in Figure 8(a). That is, we haveiiddices and To adjust the sharpness of feature lines, similar to blend
label redundantly in the case of a triangle or quad as shown ratios [Pet95] and semi-smooth creases [DKT98], we can
in Figure 8(b). Labeling the one-ring uniformly results in  generalize (13) by giving each facet corner two scalars
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P3j+3

P3j+2

Figure 9: Per-vertex computationFor every vertex in the
mesh, the control pointsandf; are defined by13). The co-
dependent co-planarjs are not computed but represented
by vectors; andT,. Indices run counter-clockwise and are
interpreted modulo n.

aj,0j11 € [0,1] (see Figure 9) and define

fij(aj,ajia) = (1—aj)(1—aji1)p« (14)
Px + P3j P« +P3j+3
‘I‘(l*(]j)(}(jjqiz J+Gj(1fdj+1)7* 5 It
Px +P3j +P3j+3 + P3jx«
+ 01— ! 4J+ I*

Settingaj = aj1 = 2/3, we recover formula (13) fof;
which, in turn, form = 4 reduces to the well-known for-
mula for bi-cubic B-spline-to-BB conversion. Setting =

aj+1 = 0, we sharpen the transition across the facet's edges
sharingv. If all scalar weights of a model are zero, the con-
trol polyhedron is reproduced (see Figures 10 and 12).

000

a=1/10 a=2/5 a=4/5

Figure 10: Sharpness adjustmenihe dodecahedron with
various blend ratiosa = 0 results in a € crease.

We abbreviate the scalars

21j 21j

Cjn:= COST7 Sjn:= SinT’ Cn:=Cin, Sn:=Sin,

M= 15 (en+ 54 v/t 9)lent 1)),

and define two vectorg, andt, that span the tangent plane
at the limit point by averaging:

g == (f; +fj,1)/2,
1 n—1

1 n-1
11 = A j;cj-,nejv = ™ ]_;Jsj,neiv (15)

Forn=4,itis easy to check th& +e =2v=e; + €3
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and these vectors simplify to, := %(fs +fo—f1—1f2) =
€ — Vv andt, := e — Vg as in standard B-spline-to-BB con-
version.

5.2. Per-patch computation

Letn' denote the input mesh valence associated with vertex
v'. To keep the notation simple, we assume without loss of
generality that the edge under consideration has endpoints
v? andv! and that thePn-patch sector with this edge has
index O as in Figure 11. Superscripts have precedence over
subscripts, so that, for instandg, refers to the successor
neighbor facet when counting counterclockwise arouhd

as illustrated in Figure 11(c).

Vv vi
300 210t) t7121 030
<&

1
-1 <>f1

(b) (©

Figure 11: Patch assemblya) For an ordinary facet, four
vertex corners are combined to assemble the bi-cubic patch
0. (b) Polar triangles are converted similarly, excépb and

h,,, markedo, are assigned to satisfy’Gonstraints atv*.

(c) The triangle sectors of aPpatch use two vertex corners

to determine the cubic boundaitys;; andb'»;.

(@)

First, for each corner=0...m-1, we compute the tan-
gent control pointsy andt) using (15) in the local context
of the corner (established by the index j*, k=0...m-1)

tj :==V+T1Cjn+T28jn. (16)

Then the cubic boundary curve betwedhandv?! of any
bi-cubic orPn-patch is defined by

0 . 040 . 0.0 . 1.0 . .1
b3g0:=V", b219:=1to, bioo:=1g, bazo:=Vv". (17)

If the facet is ordinary, the control points, tg, t} andfy
fori =0,...,3 completely determine the bi-cubic patgh
as shown in Figure 11(a). We note that (see the remark fol-
lowing (15)) equations (13) and (16) reduce to the standard
bi-cubic B-spline-to-BB conversion formulas in the ordinary
case. The polar case proceeds identically, except that, with
n* the valence av*, the coefficients shown as blackin
Figure 11(b) are chosen based on B-spline-to-Bézier curve
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conversion formulas to ensureGt fit with adjacent polar
patches:

L 1 _ *
hip:= P (2h02+ hszo+ (cp= — L)v )
hoo = e (2hg2+hoz+ (cn= —1)v¥).  (18)

Creases are supported by replading andh, by
- 3 3
hip:= éajh12+<l—5aj>h02 (19)

with scalarsy andhoy, computed similarly.

If the facet is extraordinary (Figure 11(c)), we determine
b3, 1, bY51, b304 (0r simply,bgos since it is common to all the

sectors) by the following uniform set of formulas for=
3,4,5 that follow from the constraints of Section 4.2.

pi=1—cm, Ei =1+cy,,
0 1
0 .0 & 1 0, M-8 o 0
b311 :=b310+ 4H(t1 to) + o (to—V")
3 0 <0
+ 8U(spo + Sn1) (fo—1=1)
1 0
0o .0 & o0 1. W& 1 1
b2y :=b1izp+ 4“(to t1) + 81 (t1—v’) (20
3 1 1
+ 8U(spo + Sp1) (fo—T2)
wd =2 w¥i—1 w®.=_3
o 1 M i i

For m = 4, the central BB-coefficierttigos of the Pm-patch

is chosen to be the midpoint of the bi-cubic patch defined by

Figure 11(a). Fom+ 4, bgoa is parameterized by™.

The final coefficientbillz are in principle free to choose.

We obtained best results by approximat'ﬁ@ constraints

atbgos. Form = 3, this enforces the? constraints exactly.
Hereb?y; (for m = 3) andbl,, (for m= 5) are defined by
formula (3). The Appendix verifies that the boxed formulas

enforce the continuity constraints.

Form=3
bY12:=boos+ %(bom— b302)
Form=4
b%12 :=boos+ 3(b311+bTp1 — biz — b5y3)/16
+(b311+bipy — b5 —bTon) /16 (21)

Form=5
1
bY12:= (1—cm) (b004+ c (bgoz (22)

—4com (bgoz+ b%oz) ~4(com)? <b§02+ bgoz) ) )

6. Implementation

The construction of ther6+ 1 coefficients of théPn-patch
is mapped to one GPU pass. A second pass is used to render.

6.1. Construction on the GPU

The per-vertex computation of Section 5.1 maps to the GPU
vertex shader and the per-patch computation of Section 5.2
to the geometry shader.

Thevertex shader takes as input

e atexture or vertex buffeM listing all mesh points,

e atextureZ listing for each mesh point the indices intd
of its one-ring (see Figure 8),

e atexturelisting consecutively for each one-ring all the
scalarsuj as labeled in Figure 8, and

e aninput streamcontaining for each mesh point its start-
index intoZ and its valence.

Since every vertex has a different valence, and hence, a dif-
ferent number of points in its one-ringy._ 3,1, the start-
index avoids wasteful padding to the largest valence. The
start-index is also used to look up the scalagsai. The
memory overhead of redundant one-ring indices in the case
of quad or triangle facets is comparable to that of packing
and has less control overhead; and subsequent redundant
vertex loads are always from the cache.

The vertex shader outputs, for each one-ring,

o the pointsv andfj for j = 0...n-1 using (13);
e the vectorg; andt, using (15); and
e the valencen of v.

We need only a single vertex shader for all the cases, but
create two: one simplified to 4-valent vertices to be used only
for ordinary patches. The scalars for a crease edge emanating
from a polar vertex are passed to the geometry shader as the
w-coordinate of thé; vertices.

Thegeometry shader takes as input

e the output of the vertex shader
e an integertexture of indicesjk, k=0...m-1, for each
face to pick itsf; and compute thencorner tangents (16).

We use a separate geometry shader for each patch type. If
the facet is ordinary, the geometry shader simply streams out
V', tg, t} andfy fori =0, ..., 3in order. Polar triangles output
three fewer control points. If the facet is extraordinary, we
specialize the geometry shaders to eadbr efficiency. The
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shader computes tharst 1 control points of théPm-patch Number of each patch type
. Model Verts Faces ord. polar 3 4 5
using _(20)_, (2_1) (22) and streams them out. We note that the —opodecanearall 200 T 120 o o T o1 o 0
amplification in the geometry shader is minimal. Hand 405 | 417 || 304 3’| o 74 7
Monkey 578 590 340 16 22 210 2
Frog 1308 1292 528 0 0 764 0
6.2. Evaluation and rendering on the GPU Frames per second
. . . Model N=5 9 17 33 65
The patches are rendered in a second pass by sending ifj 10Dodecahedra|| 780 | 780 | 675 | 265 | 72
a single pre-tessellate@,v) domain using DirectX 10 in- m’;‘l’(ey ;‘gg 222 jgg ig; i?
stancing and evaluating the geometry and normal in the ver- | goq 650 | 510 | 230 | 79 | 22

tex shader. This leaves the geometry and pixel shaders avail-

able for further processing and lighting computations. Table2: Construction and rendering performancen var-

ious models with each triangle, quad, and pentagen P
To render without pixel drop-out between ordinary bi- patch evaluated on a grid of siz%Nx(N+l), NxN, and
cubic patches aan—patches, we evaluate the therﬁ’al- ng(N 1), respectively.
patch boundary as a cubic and keep the ordering of compu-
tations consistent. This guarantees a watertight construction

of control points along shared boundaries. The correspond- } ,
ing if-statement at the end of the evaluation shader does not !
result in noticeable degradation in performance. ‘
For bi-cubic patches arféy-patches we use a uniform tes-
sellation of the domaif©, 1], while for P3-patches and polar
€ @@ (e

patches, we use the standard triangular domain consisting of
the half of[0, 1]? with u+ v < 1. ForPs-patches, we use the
triangular domain with 5x instancing for each of its five sec- @ (b
tors. In eaclPm-patch case, th@u,v) domain is transformed

to a local sector’s domain before evaluation. We apply equa- Figure 12: Axe with sharp creaseqa) Mesh. (b),(c) Sur-
tions (2) and (3) only now to obtain separate patches in the face without crease support, and (d),(e) with crease scalar
form (1). Evaluation and normal computation of degree 4 set toa = 1/10 along the edge of the blade. The axe has
triangular patches is comparable in cost to tensor-product bicubic patchesyellow), Pn-patches with m= 3 (green,
bi-cubic patches: in the triangular case we have 15 control m= 4 (red), and m= 5 (gray).

points and in the tensor-product case 16.

The rendering pass can be sped up and enhanced by the

use of the X-Box 360 hardware tessellation unit [Lee06], patch construction stage of the head and the monkey mod-
which supports both triangles and quads and offers fast con- g|s, as compared to the frog model, which has 2-3 times as

tinuous adaptive tessellation for free. many facets but only quad patches. It is not clear whether in
the short term one should consider merging the shaders for
7. Results triangle, quad, or pentagon construction or wait for future

. . hardware to mitigate this overhead.
We implemented the algorithm on a 2.4Ghz quad-core CPU

with 3GB RAM and 32-bit Windows Vista and a NVidia Shape can be controlled locally using crease scalars
8800 GT GPU using DirectX 10. Table 2 shows the per- Uniform adjustment everywhere allows turning a dodeca-
formance of our implementation, without creases (14), on hedron into its control polyhedron when= O, or making

a variety of meshes (shown in Figure 13). it sphere-like wherot = 4/5 (Figure 10). Applied locally,

. creases allow creating sharp features, as in Figure 12, on an
Patch construction on the 10 dodecahedra takes the least 9 P 9

. - . otherwise smooth object.
amount of time since it has the fewest facets. However, more
points are evaluated for &mn-patch asnincreases. The frog As illustrated in [NYM*08], theP4-patch construction ap-
was chosen due to its large number of extraordinary facets. proximates the Catmull-Clark limit surface well (which is
The construction pass is fast enough to yield rendering at one of the reasons we took tig-patch as a starting point
659fps. Only whern> 1000 points are evaluated per patch for developing the surface conversion).

does the frame rate drop below 100. The accompanying video illustrates scripted animation

In our implementation, we created a DirectX 10 ‘tech- on the frog, hand and monkey models evaluated With 9.
nique’ for each patch case, but loaded and used only those The electronic supplement analyzes the surface shape for
that were required to render the current model. The appar- a gallery of test configurations. Except for the saddles, the
ent overhead associated with the load and use of an addi- highlight lines do not reveal patch transitions. No internal
tional technique accounts for the poorer performance in the seams are visible in polar afh-patches.
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Figure 14: c! transition between adjacent polar patches.

Appendix A: Verification of smoothness

Here we formally verify the continuity constraints satisfied
by the formulas of Sections 3 and 5. We first show at
patches are in’[ernalgll and then show smoothness across
patch boundaries.

Internal Py-patch smoothness

Theorem 1 Adjacent sectors' ~* andb' of aPm-patch meet
with C* continuity.

Proof Two adjacent triangular patch&™* andb', as la-
beled in Figure 4, meet® since the control points along
their shared boundary are equal by (3) and they satisfy the
C! constraints [Far90, p.104] witky andk, defined in (3)
for| =0,1,2. To complete the proof, it remains to show that
(3) also holds foft = 3, i.e. establisic! continuity (5) at the
central point.

If m= 4 thenk; = 0 andk, = 1/2 and (3) specializes to

bi103 = % (b|112+ bllz%) SO that
i+1
(b'ﬁm

Substituting billz from (21) results in cancellation
of all terms with subscripts 121 and 211, leaving
(oG5 +bio3) /2= boou i.e. (5) form=4.

If m=3theni—2=i41,k =1/3=k; and (3) forl =2
yieldsb} g3 = (bhgp+bl1,+bi73)/3 so that

bl}) /2= jibim.

+blo3 +blog) = bhh3+ bgj + bhoo

+2(b13+ b5 +bh1o).
Substitution ofb;, = 3bgga/2 — bbh3/2 according to (21)
yields (5) in the form

i1
b103

i+1
3(bo3

+byo3 + blioz = 3booa

The final casen= 5 is checked analogously using symbolic
substitution and the relatiati = ,szlZ. ]
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Smoothness across patches

Adjacent ordinary patches meet wi@f continuity since

we reproduce the standard bi-cubic B-spline in this case.
Since the shared cubic boundary of two adjacent patches
(Pm-patches, polar, or ordinary) is defined by unique coef-
ficients (v0,t3,t1,v1), C° continuity is guaranteed and bi-
cubic ordinary patches (resp. polar patches) Brgatches
match up exactly, and we need only verify tangent continuity
across.

Theorem 2 The surface corresponding to a polar configura-
tion isC?.

Proof Consider two adjacent polar patchiesand h with

hsi = hg fori =0,1,2,3 (Figure 14). We need only show
that

hsi = hgi

(23)

= % (hai +hy) .
and that there exists a unique normabat= hgg, the point

of parametric singularity. By specializing Section 5.1 to the
valencen = 4 athzg = hgg this condition is satisfied fdr=
0,1. It is trivially satisfied fori = 3 due to the singularity
at v*, SinCE(ﬁoz — V*) + (h32 — V*) = 2¢cn(ho2 — V*) due

to (16), substituting (18) and letting be the valence at*
yields

1 -
> (ho2+h12)

_1 2hgo+hoz+ (en—1)Vv*  2hgp+hsz+ (cn — 1)v*
o 2 2 + Cn 2 + Cn

1 * * *
= m (4h02+2Cn(h027V )+2v' +2(cn—1)v )
=hoy,

satisfying (23) fori = 2 as well.

Since all the vectors{hiz — v*}i—p123 and {hiz —
V*}i—0,1,2.3 are co-planar by construction (16), (18), they de-
fine a unique tangent plane and normarat

Crease formula (19) uniformly scalés, and hy, toward
ho2 without affecting their average, still satisfying tie
constraints. [J

Since the polar construction (Figure 11) is identical to
the ordinary case for the two layers of Bézier control points
away from the polar vertex kjp andh;j; in Figure 14 — the
polar patch behaves identically to ordinary patches in regard
to first order continuity along the boundaryy—hsp. In par-
ticular, one can easily verify that these patches r8atith
ordinary patches using the simplified formulas fo= 4 at
the end of Section 5.1.

Theorem 3 Pp-patches medB! with ordinary patches (resp.
polar patches) and oth&-patches.

Proof First, we consider the case Wheré’n'zl-patchbi and

an ordinary patch (resp. polar patch)share a boundary
b'(u,0) = a(0,u). In this case the valences at the endpoints
are botm? = 4= n' and therefore o = cp = 0,50 = s =
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1L, A\hn=1/2,0mn=4,0n=1/2 and henceij = eij. We show If both facets are extraordinary with, andmg sides respec-
that the followingG* condition holds: tively then with
(1—2cmu) 010/ (u,0) = 24050 (1,0 + 012(0,W) (1Y) lo=8, =28, & =1+cy

wherep ;= 1— cm is defined in (20) and depends on the ((u):= ((1-wlo+uly), pi=1—cm, v:i=1-cm

the number of sides of tHén-patch. By setting two polyno-  1he 1 constraints on the two corresponding sector patches
mials of maximal degree 3 equal, equation (11) holds ifand |, 53n44 are

only if the four coefficients are equal. We need only verify

equality of the first two since the other two can be equally ~ ¢(4)01b(u,0) = pdzb(u, 0) +-vo;a(0, u). (12)

verified by starting from the other endpoint. The first coef- Again we need only verify the first two coefficient equation

ficient equation (11) establishes that the per-vertex com- (12;) and (12) of the four equivalent to (12). By (3) and
putation generates a common tangent plane at the endpoint

u=0: albi (0,0) = 2|J.62bi (0,0) +01a(0,0). In terms of co-

AN £ o f8<> Of% ot
0 1
& o fo<> <>fo Oe% b
. 301 211
i
300 211D vy 306 -0 okl
t t
v 3105 —<—0 OVt 031 121
€0 il a
a

o O > o

Figure 15: G! transition between a Jﬁ-patchbi and a bi-

cubic patcha. Figure 16: G! transition between sectors of arf-patchb

and a R, -patcha.
efficients (see Figure 15), sincglg = 4,

, . , sincek; = =1 andk, = 4,
2p4(bbo1 —v°) = 81 (ks — LV° + ko (10 + blrzg) ) " ¥
M=1o 1 i—1 )
3 b(0,0) =4 (—v + ——(b3o+b
:4(2(68+e%—2\/°)):3(68+e%)f6v°. H020(0,0) = | TV gy (Patot Pazo)
i i—1_ 50 3.0, .0 50
Therefore equation (4} simplifies to and is easily verified = 2(b310+bizg—2V") = 2, (ti+to—2v7).
as
o o o o 6 o o Since(t ; —vO) + (12 —v0) = 2¢, o (18— VP, (12;) simplifies
3(eg—Vv')=3(egtep)—6v —3(er—Vv) (11) to and is easily checked as
N——
9101 (0,0) 249,b1(0,0) 012(0,0) 0,0 {0 410
N o 3(1+cp)—vO) =3 Ll o) 3(atlo o
The second BB-coefficient ¢l — 2cmu) 01b'(u,0) is —_— 2 2
0 1 0 £601b(0,0)
~ (21— 1)(e — Vo) +2(e1 — &) b02b(0,0) va:a(0,0)
C 3 1 0 .0 0 .0
; =32 (2c0(tg—V 2(tg—Vv)). (12
and of 219,b' (u,0) is (cf. Figure 15) 2 ( cro(to—v5) +2(to )> (121)
2u- 4(bi211— bi310) Since the transversal terms involviffy— fal in the expan-
0 o o sions ofb,11 andvag o1 cancel, the second coefficient equa-
— 8y <€‘% —% + 2p-1 (98 _ v°) i 3f - eo) tion simplifies to and is easily checked as
4 8 8
N 6o(th — t§) + 311§ —v°)
=2(e1—ep)+(2u—1)(eg—Vv") +3(f" —ep). = 12u(b211 — b310) + 12v(a121— b310)
ng so the second equality simplifies to and is easily checked =680t} —19) +3(2u—&H I —\O). (12,)
0 0 1 0 0 0 So the claim of smoothness is verified[]
(2u—1)(eg— V") +2(eg — €0) = 2(€1 — &) (L)

+ (21— 1)(€3—vO) +3(°— &) — 3(°— ).
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Figure 17: Elliptic and saddle shapes witR;-patch top two rows) and Ps-patch (est).
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Figure 18: Elliptic and saddle shapes with 6tdp three rows) and 12-valent {est) polar configurations.
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