
Eurographics Symposium on Geometry Processing 2008
Pierre Alliez and Szymon Rusinkiewicz
(Guest Editors)

Volume 27(2008), Number 5

Fast Parallel Construction of Smooth Surfaces from Meshes
with Tri/Quad/Pent Facets

A. Myles and T. Ni and J. Peters

University of Florida

Abstract
Polyhedral meshes consisting of triangles, quads, and pentagons andpolar configurations cover all major sam-
pling and modeling scenarios. We give an algorithm for efficient local, parallel conversion of such meshes to an
everywhere smooth surface consisting of low-degree polynomial pieces. Quadrilateral facets with 4-valent vertices
are ‘regular’ and are mapped to bi-cubic patches so that adjacent bi-cubics join C2 as for cubic tensor-product
splines. The algorithm can be implemented in the vertex and geometry shaders of the GPU pipeline and does not
use the fragment shader. Its implementation in DirectX 10 achieves conversion plus rendering at 659 frames per
second with 42.5 million triangles per second on input of a model of 1300 facets of which 60% are not regular.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Motivation

(a) (b) (c)

Figure 1: Transition of feature lines.(a,b) Axe handle de-
tail (see Figure 12) using a triangle and a pentagon to tran-
sition between detailed and coarser areas. (c) Polar configu-
rations naturally terminate parallel feature lines along elon-
gations, like fingers.

Compared to pure quad meshes, meshes allowing for tri-
angles, quadrilaterals, and pentagons and polar configura-
tions simplify remeshing of scanned data and enrich the
design space for control meshes of smooth surfaces: while
quads naturally model the flow of (parallel) feature lines and
are therefore the main facet type in many models, triangu-
lar facets allow merging lines while pentagonal facets allow
starting new lines without creating T-corners (as illustrated
in Figure 1) or forcing refinement of intermediate models to

satisfy connectivity or quad-layout constraints.Polar con-
figurations, that is closed triangle fans whose outer vertices
have valence 4 and central vertex has arbitrary (possibly
large) valence, naturally model features such as finger tips
and eyes (Figures 1, 2). This paper gives a local, parallel al-

Figure 2: A quad/tri/pent modelconverted to a smooth sur-
face consisting of bi-cubic patches (yellow), polar patches
(orange), and Pm-patches m= 3 (green), m= 4 (red), m= 5
(gray). Cf. Fig. 13.

gorithm and describes its GPU implementation to automat-
ically convert such a general polyhedral mesh into a piece-
wise polynomial surface

submitted toEurographics Symposium on Geometry Processing (2008)

2 A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets

• that isC1 everywhere andC2 in regular regions that are
converted to bi-cubic patches; and,

• consists of one patch for each triangle, quad, or pentagon
in the mesh regardless of vertex valence; there is no need
for preprocessing to isolate mesh points of different va-
lence or to convert all facets into one facet type;

• is computed using only local mesh context so that the sur-
faces can be constructed and rendered in parallel on the
GPU at high frame rates.

coeffs [LS08] [NYM ∗08] our method
triangle 25×3 = 75 24×3 = 72 13 or 19
pentagon 25×5 = 125 24×5 = 120 31

Table 1: Number of control points pern-gon. Converting
triangles and pentagons directly avoids a control-point am-
plifying subdivision step needed to apply [LS08,NYM∗08].

The advantage of not having to refine quad-dominant meshes
[LKH08] to pure quad meshes is evident in Table 1; and sim-
ple T-corners in quad-dominant meshes can be replaced by
5-sided facets. We limit the facets to triangles, quads and
pentagons due to current GPU constraints (see Section 8).

Section 3 introduces the patch representations, Section 4
the (continuity) constraints that imply the construction rules
and Section 5 gives these rules explicitly, inside boxes, so
that they are easy to implement. Section 6 explains an im-
plementation on the GPU. The electronic Appendix explic-
itly verifies the correctness of the formulas and displays a
gallery of configurations testing the surface quality.

2. Related Literature

Catmull-Clark subdivision [CC78] is an accepted standard
for mesh smoothing. Techniques evaluating or approximat-
ing its limit surface such as [Sta98, BS02, Bun05, SJP05,
Pet00] require separation of extraordinary vertices (those
with valence6= 4) to construct their data structures or re-
duce the number of cases, quadrupling the number of facets
in the mesh. The constructions in [LS08, NYM∗08] do not
require such separation and have been implemented on the
GPU at high frame rates: [LS08] yields bi-cubicC0 surfaces
with surrogate tangent patches for consistent lighting (see
also [VPBM01]; and [BS07] for once CPU-refined Loop
meshes); [NYM∗08] generatesC1 surfaces that approximate
Catmull-Clark surfaces well. For quad meshes, our construc-
tion reduces to [NYM∗08].

[SL03,PS04,SW05] accept both triangles and quads and
thereby avoid additional CPU subdivision into quad-only
meshes; but we are unaware of efficient GPU implementa-
tions of these algorithms. The advantage of supporting po-
lar configurations for high-valent vertices has been demon-
strated in [MKP07]. We reinterpret this construction to fit
GPU constraints.

3. Patch construction types

00

00 01

01

02

03

10

10 11

11

12

13

20

20 21

21

22

23

30

30 31

31

32

33

g h bi

bi+1
bi−1

ordinary polar extraordinary
(a) (b) (c)

Figure 3: Mesh-to-patch conversion.The input mesh (top)
is converted to patches (bottom) as follows. (a) An ordinary
facet is converted to a bi-cubic patch with 16 control points
gi j . (b) Every triangle in polar configuration becomes a sin-
gular bi-cubic patch represented by 13 control points◦. (c)
An extraordinary facet with m sides is converted to a Pm-
patch defined by6m+1 control points shown as◦. The Pm-
patch is equivalent to m C1-connected degree-4 triangular
patchesbi , i = 0. . .m−1, having cubic outer boundaries.

We have three classes of facets in our input mesh:

1. Ordinary: quads with all vertices having valence 4.
2. Polar: triangles in polar configurations.
3. Extraordinary: triangles, pentagons, and those quads that

are not ordinary facets due to vertex valence.

Ordinary & Polar:
We convert ordinary quads and polar triangles to tensor-
product degree bi-3 patches in Bernstein-Bézier form (BB-
form),

g(u,v) :=
3

∑
i=0

3

∑
j=0

gi j

(

3
i

)

(1−u)3−iui

(

3
j

)

(1−v)3− jv j ,

defined by only 4×4 BB-coefficientsgi j ∈ R
3. The coeffi-

cients are indexed as in Figure 3(a). Since the edge 03—33
of the polar patch is collapsed to one vertex, the polar patch
h is defined by 13 BB-coefficientshi j ∈ R

3 (Figure 3(b)).

Extraordinary:
An extraordinary facet withm sides is converted into aPm-
patch. APm-patch is a piecewise degree 4C1 spline patch
with m boundaries of degree 3. APm-patch is defined by
6m+ 1 control points indicated as◦ in Figures 3(c),4(a).
That is, thePm-patch corresponding to a triangular, quadri-
lateral or pentagonal facet is defined by a total of 19, 25 or
31 points, respectively.

For evaluation, we can write theith sector of aPm-patch in
triangular BB-form of total-degree 4 (Figure 3(b) and (c)),

b(u,v) := ∑
i+ j+k=4

bi jk
4!

i! j!k!
uiv j (1−u−v)k, (1)

submitted toEurographics Symposium on Geometry Processing (2008)

A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets 3

bb

bi bi

bi+1bi−1

400 310 220 130 040

301

211

211 211

121

121 121 031

202

112112

112 112 022

103 013

004 004

300

210

210

120

120 030

(a) (b)

Figure 4: Sector of aPm-patch.The triangularsectorsare
listed in counter-clockwise order with a modulo-m super-
script. (a) 14 control points from three consecutive sectors of
a Pm-patch define (b) a single patch in triangular BB-form
via relations(2) and (3).

where the
(4+2

2

)
BB-coefficientsbi jk ∈R

3 indexed as in Fig-
ure 4(b) are computed from the 14 coefficients labeled in
4(a) by simple averaging, namely

1. degree-raising the cubic boundary

[bi
400,b

i
310,b

i
220,b

i
130,b

i
040] = (2)

[bi
300,

bi
300+3bi

210
4

,
bi

210+bi
120

2
,
3bi

120+bi
030

4
,bi

030]

2. and computing the shared BB-coefficients on the sector
boundariesbi

3−l ,0,1+l = bi−1
0,3−l ,1+l for l = 0,1,2,3 corre-

sponding to indices 301, 202, 103 and 004 in Figure 4(b),
from theC1 constraints (cf. Section 4.1 below):

cm := cos
2π
m

, µ := 1− cm, k2 :=
1
2µ

,k1 := 1−2k2,

bi
3−l ,0,l+1 :=k1bi

4−l ,0,l +k2

(

bi
3−l ,1,l +bi−1

1,3−l ,l

)

. (3)

4. Smoothness constraints

In this section, we motivate the smoothness constraints that
definePm-patches. The challenge in choosing the smooth-
ness constraints is threefold: (i) to guarantee solvability for
the coefficients of the patches and their layout, (ii) to arrive
at simple formulas for the construction and (iii) to obtain
rules that obey the topology and reflect the geometry of the
input mesh. Section 4.1 examines the intra-Pm-patch bound-
aries emanating from the center of the patch to each of its
corners, and Section 4.2 addresses the boundary between ad-
jacent patches.

4.1. Internal Pm-patch smoothness

Figure 5 illustrates the transition between two sectors of the
Pm-patch. At the central point of thePm-patch, the unbiased
choice of tangents implies

2cm(bi
103−bi

004) = (bi−1
103 −bi

004)+(bi+1
103−bi

004). (4)

Hereunbiasedmeans that the construction does not depend
on which corner we choose for the starting index. By el-
ementary transformation, and noting thatbi

013 = bi+1
103, this

b

bi
004

bi−1
103

bi
103

bi+1
103

cm

bi
112

bi
301

bi
310

bi−1
130

v0=bi
400 v1=bi

040
t0=bi

210

bi−1
120=t1

t−1

2µ

2µ

Figure 5: Internal Pm-patch constraints.The isotropic C1

constraint at the patch centerbi
004 (red arrows, see Equation

(4)) is propagated to the vertexv0 = bi
400. The tangent coef-

ficientst0 andt1 correspond to consecutive external bound-
aries of the Pm-patch; t−1 belongs to the neighbor patch
across the horizontal edgev0, v1.

relation is equivalent to

b004 = k1bi
103+k2

(

bi
013+bi−1

103

)

, (5)

i.e. relation (3) forl = 3. To obtain an internallyC1 Pm-patch,
it is necessary and sufficient to enforce this relation along the
internal sector boundaries:

2(1− cm)(bi
3−l ,0,l+1−bi

4−l ,0,l) = (6)

(bi
3−l ,1,l −bi

4−l ,0,l)+(bi−1
1,3−l ,l −bi

4−l ,0,l)

The relation holds due to the assignment (3) forl = 0,1,2,3.

4.2. Smoothness across patches

At v0, the internalC1 constraints merge with theG1 con-
straints across facet edges. We focus on thePm-patch edge
from v0 to v1. Let ∂k be the partial derivative operator
with respect to thekth parameter (Figure 6,left). Then
∂1bi(0,0) = 3(t0 − v0) = 4(bi

310− v0) at v0 in the direc-
tion of v1; and similarly, 3(t1− v0) = 4(bi−1

130 − v0). For an

unbiased choice oft j andn0 the valence atv0,

2cn0(t0−v0) = (t1−v0)+(t−1−v0). (7)

must hold. By relation (6) atv0, i.e. for l = 0,

4
3k2

(bi
301−v0) = (t0−v0)+(t1−v0). (8)

Eliminating(t1−v0) between (8) and (7) yields

t−1−v0 = (1+2cn)(t0−v0)−
8µ
3

(bi
301−v0). (9)

If, in particular v0 and v1 are the endpoints of the cubic
boundarybi(u,0) = g(0,u) between a bi-cubic patchg and

submitted toEurographics Symposium on Geometry Processing (2008)

4 A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets

bi(u,v)

g(w,u)

∂1

∂1

∂2

∂2

b(u,v)

a(w,u)

∂1

∂1

∂2

∂2

Figure 6: Derivatives along adjacent patches.(left) The
Pm-patch-ordinary and (right) Pm-patch-Pm-patch bound-
aries.∂k differentiates with respect to the kth parameter.

aPm-patchbi thenn0 = 4 hencecn0 = 0; and at(0,0) corre-
sponding tov0,

∂1g(0,0) = 3(t−1−v0), ∂2bi(0,0) = 4(bi
301−v0).

Then (9) simplifies to

∂1g(0,0) = ∂1bi(0,0)−2µ∂2bi(0,0) (10)

This defines the first constraint of theG1 conditions (11).
The analogous constraint atv1 needs to be recast so that
the direction of the derivative is consistent with the con-
straint atv0, resulting in the linearly blended left hand side
(1−2cmu)∂1bi(u,0) of theG1 conditions

(1−2cmu)∂1bi(u,0) = 2µ∂2bi(u,0)+∂1g(0,u). (11)

When aPmb -patch sectorb meets aPma -patch sectora
(Figure 6,right), we need to replacet−1−v0 by the substi-
tution analogous to (8). The result are the scalarµ,ν weights
in theG1 conditions

ℓ(u)∂1b(u,0) = µ∂2b(u,0)+ν∂1a(0,u), (12)

where

µ := 1− cmb , ν := 1− cma , ξi := 1+ cni ,

ℓ(u) :=
(
(1−u)ℓ0 +uℓ1

)
, ℓ0 := ξ0, ℓ1 := 2µ−ξ1.

5. Construction

The patches are constructed in two stages (that will corre-
spond to shaders in the GPU implementation) and that are
summarized in Figure 7. The algorithm can be implemented
using only the boxed formulas in this section.

5.1. Per-vertex computation

The first stage computes local information around a vertex
p∗. For consistent labeling irrespective of the numbern of
surrounding facets or their numbermof sides, we use indices
p j as labeled in Figure 8(a). That is, we have 3n indices and
label redundantly in the case of a triangle or quad as shown
in Figure 8(b). Labeling the one-ring uniformly results in

(a) (b) (c)

Figure 7: Algorithm Overview.(a) Tri/quad/pent input mesh
with verticespi . (b) Per-vertex computation generating co-
efficientsvi , ti

j and f j . (c) Per-facet computation generating

internal coefficientsbi
211, bi

121, bi
112 andbi

004 (purple).

p∗

p∗

p∗

p0

p1 p2

p3
p3 j

p3 j

p3 j+1

p3 j+2

p3 j+3

p3 j+3

p3 j+1=p3 j+2

p3 j =p3 j+2

p3 j+1=p3 j+3

p3n−3

p3n−2

p3n−1

αn−1

α0 α1

α j

α j+1

(a) (b)

Figure 8: Per-vertex input.(a) When every facet at the mesh
point p∗ is 5-sided, we need3n indices. (b) Triangles and
quads are redundantly indexed.

simple generic formulas and does not result in noticeable
overhead for the GPU implementation (see Section 6.1). For
each edge emanating from thep∗, there is one scalar to sup-
port creases.

At each vertexp∗ of the input mesh, we compute (see Fig-
ure 9) a corresponding pointv (by default the Catmull-Clark
limit point) and face verticesf j positioned according to the
well-known B-spline-to-BB-form conversion formulas:

p3 j∗ :=
(
p3 j+1 +p3 j+2

)
/2

f j :=
1
9

(
4p∗ +2(p3 j +p3 j+3)+p3 j∗

)

v :=
1

n(n+5)

n−1

∑
j=0

(
9f j +(n−4)p∗

)
(13)

To adjust the sharpness of feature lines, similar to blend
ratios [Pet95] and semi-smooth creases [DKT98], we can
generalize (13) by giving each facet corner two scalars

submitted toEurographics Symposium on Geometry Processing (2008)

A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets 5

p∗

p3 j

p3 j+1

p3 j+2
p3 j+3

f j

f j−1

f j+1

v
t j

t j+1

t j−1

t j+2

α j

α j+1

Figure 9: Per-vertex computation.For every vertex in the
mesh, the control pointsv andf j are defined by(13). The co-
dependent co-planart js are not computed but represented
by vectorsτττ1 andτττ2. Indices run counter-clockwise and are
interpreted modulo n.

α j ,α j+1 ∈ [0,1] (see Figure 9) and define

f j (α j ,α j+1) := (1−α j)(1−α j+1)p∗ (14)

+(1−α j)α j+1
p∗ +p3 j

2
+α j (1−α j+1)

p∗ +p3 j+3

2

+α j α j+1
p∗ +p3 j +p3 j+3 +p3 j∗

4
.

Settingα j = α j+1 = 2/3, we recover formula (13) forf j
which, in turn, form = 4 reduces to the well-known for-
mula for bi-cubic B-spline-to-BB conversion. Settingα j =
α j+1 = 0, we sharpen the transition across the facet’s edges
sharingv. If all scalar weights of a model are zero, the con-
trol polyhedron is reproduced (see Figures 10 and 12).

α=1/10 α=2/5 α=4/5

Figure 10: Sharpness adjustment.The dodecahedron with
various blend ratios.α = 0 results in a C0 crease.

We abbreviate the scalars

c j,n := cos
2π j
n

, s j,n := sin
2π j
n

, cn := c1,n, sn := s1,n,

λn :=
1
16

(

cn +5+
√

(cn +9)(cn +1)
)

,

and define two vectorsτττ1 andτττ2 that span the tangent plane
at the limit point by averaging:

e j := (f j + f j−1)/2,

τττ1 :=
1

nλn

n−1

∑
j=0

c j,ne j , τττ2 :=
1

nλn

n−1

∑
j=0

s j,ne j , (15)

For n = 4, it is easy to check thate0 + e2 = 2v = e1 + e3

and these vectors simplify toτττ1 := 1
4(f3 + f0 − f1 − f2) =

e0−v andτττ2 := e1−v0 as in standard B-spline-to-BB con-
version.

5.2. Per-patch computation

Let ni denote the input mesh valence associated with vertex
vi . To keep the notation simple, we assume without loss of
generality that the edge under consideration has endpoints
v0 and v1 and that thePm-patch sector with this edge has
index 0 as in Figure 11. Superscripts have precedence over
subscripts, so that, for instance,f1

1 refers to the successor
neighbor facet when counting counterclockwise aroundv1

as illustrated in Figure 11(c).

b

v0v0

f0
0f0

0

t0
0t0

0

t0
1t0

1 t1
0t1

0

t1
1t1

1

v∗

t∗0 t∗1

v1v1

f1
0f1

0

v0

f0
0

f0
−1

t0
0 t1

1
f1
1

f1
0

v1

b0

b1
b−1

g h
211

121

121
112

004

300 210 030

(a) (b) (c)

Figure 11: Patch assembly.(a) For an ordinary facet, four
vertex corners are combined to assemble the bi-cubic patch
g. (b) Polar triangles are converted similarly, excepth12 and
h22, marked◦, are assigned to satisfy C1 constraints atv∗.
(c) The triangle sectors of a Pm-patch use two vertex corners
to determine the cubic boundary,bi

211 andbi
121.

First, for each corneri = 0. . .m−1, we compute the tan-
gent control pointsti

0 andti
1 using (15) in the local context

of the corner (established by the indexj = jk, k = 0. . .m−1)

t j := v+τττ1c j,n +τττ2s j,n. (16)

Then the cubic boundary curve betweenv0 andv1 of any
bi-cubic orPm-patch is defined by

b0
300 := v0, b0

210 := t0
0, b0

120 := t1
0, b0

030 := v1. (17)

If the facet is ordinary, the control pointsvi , ti
0, ti

1 andfi
0

for i = 0, . . . ,3 completely determine the bi-cubic patchg
as shown in Figure 11(a). We note that (see the remark fol-
lowing (15)) equations (13) and (16) reduce to the standard
bi-cubic B-spline-to-BB conversion formulas in the ordinary
case. The polar case proceeds identically, except that, with
n∗ the valence atv∗, the coefficients shown as black◦ in
Figure 11(b) are chosen based on B-spline-to-Bézier curve

submitted toEurographics Symposium on Geometry Processing (2008)

6 A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets

conversion formulas to ensure aC1 fit with adjacent polar
patches:

h12 :=
1

2+ cn∗

(
2h02+h32+(cn∗ −1)v∗

)

h22 :=
1

2+ cn∗

(
2h32+h02+(cn∗ −1)v∗

)
. (18)

Creases are supported by replacingh12 andh22 by

ˆh12 :=
3

2
α j h12+

(

1−
3

2
α j

)

h02 (19)

with scalarsα j and ˆh22, computed similarly.

If the facet is extraordinary (Figure 11(c)), we determine
b0

211, b0
121, b0

004 (or simply,b004 since it is common to all the
sectors) by the following uniform set of formulas form =
3,4,5 that follow from the constraints of Section 4.2.

µ := 1− cm, ξi := 1+ cni ,

b0
211 :=b0

310+
ξ0

4µ
(t1

1− t0
0)+

2µ−ξ1

8µ
(t0

0−v0)

+
3

8µ(sn0 + sn1)
(f0

0− f0
−1)

b0
121 :=b0

130+
ξ1

4µ
(t0

0− t1
1)+

2µ−ξ0

8µ
(t1

1−v1) (20)

+
3

8µ(sn0 + sn1)
(f1

0− f1
1)

w(3) := 2, w(4) := 1, w(5) := −3,

b004 :=
1

m(15+w(m))

m−1

∑
i=0

(

w(m)vi +3(ti
0 + ti

1)+9fi
)

For m = 4, the central BB-coefficientb004 of the Pm-patch
is chosen to be the midpoint of the bi-cubic patch defined by
Figure 11(a). Form 6= 4, b004 is parameterized byw(m).

The final coefficientsbi
112 are in principle free to choose.

We obtained best results by approximatingC2 constraints
at b004. For m= 3, this enforces theC2 constraints exactly.
Hereb2

103 (for m = 3) andbi
202 (for m = 5) are defined by

formula (3). The Appendix verifies that the boxed formulas
enforce the continuity constraints.

Form= 3

b0
112 :=b004+

1
2
(b004−b2

202)

Form= 4

b0
112 :=b004+3(b0

211+b0
121−b1

121−b−1
211)/16

+(b1
211+b−1

121−b2
211−b2

121)/16 (21)

Form= 5

b0
112 := (1− cm)

(

b004+
1
5

(

b3
202 (22)

−4c2,m

(

b0
202+b1

202

)

−4(c2,m)2
(

b2
202+b4

202

)))

6. Implementation

The construction of the 6m+ 1 coefficients of thePm-patch
is mapped to one GPU pass. A second pass is used to render.

6.1. Construction on the GPU

The per-vertex computation of Section 5.1 maps to the GPU
vertex shader and the per-patch computation of Section 5.2
to the geometry shader.

Thevertex shader takes as input

• a texture or vertex bufferM listing all mesh points,
• a textureI listing for each mesh point the indices intoM

of its one-ring (see Figure 8),
• a texture listing consecutively for each one-ring all the

scalarsα j as labeled in Figure 8, and
• an input streamcontaining for each mesh point its start-

index intoI and its valence.

Since every vertex has a different valence, and hence, a dif-
ferent number of points in its one-ringp0...3n−1, the start-
index avoids wasteful padding to the largest valence. The
start-index is also used to look up the scalarsα0,α1. The
memory overhead of redundant one-ring indices in the case
of quad or triangle facets is comparable to that of packing
and has less control overhead; and subsequent redundant
vertex loads are always from the cache.

The vertex shader outputs, for each one-ring,

• the pointsv andf j for j = 0. . .n−1 using (13);
• the vectorsτττ1 andτττ2 using (15); and
• the valencen of v.

We need only a single vertex shader for all the cases, but
create two: one simplified to 4-valent vertices to be used only
for ordinary patches. The scalars for a crease edge emanating
from a polar vertex are passed to the geometry shader as the
w-coordinate of thef j vertices.

Thegeometry shader takes as input

• the output of the vertex shader
• an integertextureof indices jk, k = 0. . .m−1, for each

face to pick itsf j and compute themcorner tangents (16).

We use a separate geometry shader for each patch type. If
the facet is ordinary, the geometry shader simply streams out
vi , ti

0, ti
1 andfi

0 for i = 0, . . . ,3 in order. Polar triangles output
three fewer control points. If the facet is extraordinary, we
specialize the geometry shaders to eachm for efficiency. The

submitted toEurographics Symposium on Geometry Processing (2008)

A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets 7

shader computes the 6m+ 1 control points of thePm-patch
using (20), (21) (22) and streams them out. We note that the
amplification in the geometry shader is minimal.

6.2. Evaluation and rendering on the GPU

The patches are rendered in a second pass by sending in
a single pre-tessellated(u,v) domain using DirectX 10 in-
stancing and evaluating the geometry and normal in the ver-
tex shader. This leaves the geometry and pixel shaders avail-
able for further processing and lighting computations.

To render without pixel drop-out between ordinary bi-
cubic patches andPm-patches, we evaluate the externalPm-
patch boundary as a cubic and keep the ordering of compu-
tations consistent. This guarantees a watertight construction
of control points along shared boundaries. The correspond-
ing if-statement at the end of the evaluation shader does not
result in noticeable degradation in performance.

For bi-cubic patches andP4-patches we use a uniform tes-
sellation of the domain[0,1]2, while forP3-patches and polar
patches, we use the standard triangular domain consisting of
the half of[0,1]2 with u+v≤ 1. ForP5-patches, we use the
triangular domain with 5x instancing for each of its five sec-
tors. In eachPm-patch case, the(u,v) domain is transformed
to a local sector’s domain before evaluation. We apply equa-
tions (2) and (3) only now to obtain separate patches in the
form (1). Evaluation and normal computation of degree 4
triangular patches is comparable in cost to tensor-product
bi-cubic patches: in the triangular case we have 15 control
points and in the tensor-product case 16.

The rendering pass can be sped up and enhanced by the
use of the X-Box 360 hardware tessellation unit [Lee06],
which supports both triangles and quads and offers fast con-
tinuous adaptive tessellation for free.

7. Results

We implemented the algorithm on a 2.4Ghz quad-core CPU
with 3GB RAM and 32-bit Windows Vista and a NVidia
8800 GT GPU using DirectX 10. Table 2 shows the per-
formance of our implementation, without creases (14), on
a variety of meshes (shown in Figure 13).

Patch construction on the 10 dodecahedra takes the least
amount of time since it has the fewest facets. However, more
points are evaluated for anPm-patch asm increases. The frog
was chosen due to its large number of extraordinary facets.
The construction pass is fast enough to yield rendering at
659fps. Only when> 1000 points are evaluated per patch
does the frame rate drop below 100.

In our implementation, we created a DirectX 10 ‘tech-
nique’ for each patch case, but loaded and used only those
that were required to render the current model. The appar-
ent overhead associated with the load and use of an addi-
tional technique accounts for the poorer performance in the

Number of each patch type
Model Verts Faces ord. polar 3 4 5

10 Dodecahedra 200 120 0 0 0 0 120
Hand 405 417 304 33 0 74 7
Monkey 578 590 340 16 22 210 2
Frog 1308 1292 528 0 0 764 0

Frames per second
Model N=5 9 17 33 65

10 Dodecahedra 780 780 675 265 72
Hand 480 480 390 231 63
Monkey 480 486 452 163 47
Frog 659 510 230 79 22

Table 2: Construction and rendering performanceon var-
ious models with each triangle, quad, and pentagon Pm-
patch evaluated on a grid of size12N×(N+1), N×N, and
5
2N×(N+1), respectively.

(a) (b) (c) (d) (e)

Figure 12: Axe with sharp creases.(a) Mesh. (b),(c) Sur-
face without crease support, and (d),(e) with crease scalar
set toα = 1/10 along the edge of the blade. The axe has
bicubic patches (yellow), Pm-patches with m= 3 (green),
m= 4 (red), and m= 5 (gray).

patch construction stage of the head and the monkey mod-
els, as compared to the frog model, which has 2-3 times as
many facets but only quad patches. It is not clear whether in
the short term one should consider merging the shaders for
triangle, quad, or pentagon construction or wait for future
hardware to mitigate this overhead.

Shape can be controlled locally using crease scalarsα.
Uniform adjustment everywhere allows turning a dodeca-
hedron into its control polyhedron whenα = 0, or making
it sphere-like whenα = 4/5 (Figure 10). Applied locally,
creases allow creating sharp features, as in Figure 12, on an
otherwise smooth object.

As illustrated in [NYM∗08], theP4-patch construction ap-
proximates the Catmull-Clark limit surface well (which is
one of the reasons we took theP4-patch as a starting point
for developing the surface conversion).

The accompanying video illustrates scripted animation
on the frog, hand and monkey models evaluated withN = 9.
The electronic supplement analyzes the surface shape for
a gallery of test configurations. Except for the saddles, the
highlight lines do not reveal patch transitions. No internal
seams are visible in polar andPm-patches.

submitted toEurographics Symposium on Geometry Processing (2008)

8 A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets

8. Discussion of extensions, limitations and uses

Our approach would benefit from a larger buffer for inter-
mediate vertex shader output to prevent vertex-shader re-
computations; and from the ability to switch out the geom-
etry shader without clearing this buffer. (We did not attempt
to find an optimal mesh facet order to reduce vertex shader
re-computation.) We restrict the number of facet sides to less
than six since six is the maximum number of vertex shader
inputs to the geometry shader and since we did not find local
formulas that always result in good shape form-sided facets
whenm > 5. The vertex shader’s current 16 output vector
streams in DirectX 10 limits the maximum valence ton≤ 13
(without packing the face vertices). While the valence at ver-
tices is formally unrestricted, the inclusion of all three facet
types allows the designer or remeshing algorithm to keep
valences low, which is desirable, or isolate high-valence ver-
tices in polar configurations. When sharper features skew
the parametrization, distortions of the textures are avoided
by applying the same sharpening rules to the texture coordi-
nates.

The conversion fits well into a GPU morphing pipeline:
only the texture or buffer containing the list of input mesh
points needs to be updated before the surface construction
pass. In particular, vertex buffer swapping constructs and
renders scripted animations as fast as static ones.

Acknowledgments:This work was supported by NSF
Grant CCF-0430891. Young In Yeo helped implement the
technique. The work additionally benefited from CGAL’s
half-edge data structure and used Bay Raitt’s monster frog
and Blender’s monkey (blender.org).

(a) (b) (c)

Figure 13: Hand, Monkey and Frog.(a) Input mesh, (b)
surface patches colored by type (ordinary in yellow, polar in
orange, extraordinary triangle in green, extraordinary quad
in red, and pentagons in gray), (c) final surface.

References

[BS02] BOLZ J., SCHRÖDER P.: Rapid evaluation of Catmull-
Clark subdivision surfaces. InProc. Web3D 2002, ACM Press,
pp. 11–17.

[BS07] BOUBEKEUR T., SCHLICK C.: Qas: Real-time quadratic
approximation of subdivision surfaces. InPac. Gr. 2007IEEE,
pp. 453–456.

[Bun05] BUNNELL M.: GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computa-
tion. Addison-Wesley, 2005

[CC78] CATMULL E., CLARK J.: Recursively generated B-spline
surfaces on arbitrary topological meshes.Computer Aided De-
sign 10(1978), 350–355.

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision sur-
faces in character animation. InSIGGRAPH 1998, ACM Press,
pp. 85–94.

[Far90] FARIN G.: Curves and Surfaces for Computer Aided Ge-
ometric Design: A Practical Guide. Academic Press, 1990.

[HB00] HAHMANN S., BONNEAU G.-P.: TriangularG1 interpo-
lation by 4-splitting domain triangles.Computer Aided Geomet-
ric Design 17, 8 (2000), 731–757.

[Lee06] LEE M.: Next generation graphics programming on
Xbox 360, 2006.

[LKH08] L AI Y.-K., KOBBELT L., HU S.-M.: An incremental
approach to feature aligned quad dominant remeshing. In2008
ACM Symp. on Solid and Physical Modeling, ACM, to appear.

[LS08] LOOP C., SCHAEFER S.: Approximating Catmull-Clark
subdivision surfaces with bicubic patches.ACM Trans. Graph.
27, 1 (2008), 1–11.

[MKP07] MYLES A., KARČIAUSKAS K., PETERSJ.: Extending
Catmull-Clark subdivision and PCCM with polar structures. In
Pac.Gr. 2007, IEEE, pp. 313–320.

[NYM ∗08] NI T., YEO Y. I., M YLES A., GOEL V., PETERSJ.:
Smooth surfaces from 4-sided facets. InProc. IEEE SMI2008

[Pet95] PETERSJ.: C1-surface splines.SIAM Journal on Numer-
ical Analysis 32, 2 (1995), 645–666.

[Pet00] PETERSJ.: Patching Catmull-Clark meshes. InSiggraph
2000, ACM Press, 255–258.

[PS04] PETERSJ., SHIUE L.: Combining 4- and 3-direction sub-
division. ACM Trans. Graph. 23, 4 (2004), 980–1003

[SJP05] SHIUE L.-J., JONES I., PETERS J.: A realtime GPU
subdivision kernel.ACM Trans. Graph. 24, 3 (2005), 1010–1015.

[SL03] STAM J., LOOP C. T.: Quad/triangle subdivision.Com-
puter Graphics Forum 22, 1 (2003), 79–86.

[Sta98] STAM J.: Exact evaluation of Catmull-Clark subdivision
surfaces at arbitrary parameter values. InSIGGRAPH(1998),
pp. 395–404.

[SW05] SCHAEFERS., WARREN J. D.: On C2 triangle/quad sub-
division. ACM Trans. Graph. 24, 1 (2005), 28–36.

[VPBM01] VLACHOS A., PETERS J., BOYD C., MITCHELL

J. L.: Curved PN triangles. InI3D (2001), ACM Press, pp. 159–
166.

submitted toEurographics Symposium on Geometry Processing (2008)

A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets 9

00

00

01

01

10

10

11

11
20

20

21

21
30

30

31
31

v∗

h

h

Figure 14: C1 transition between adjacent polar patches.

Appendix A: Verification of smoothness

Here we formally verify the continuity constraints satisfied
by the formulas of Sections 3 and 5. We first show thatPm-
patches are internallyC1 and then show smoothness across
patch boundaries.

Internal Pm-patch smoothness

Theorem 1 Adjacent sectorsbi−1 andbi of aPm-patch meet
with C1 continuity.

Proof Two adjacent triangular patchesbi−1 and bi , as la-
beled in Figure 4, meetC0 since the control points along
their shared boundary are equal by (3) and they satisfy the
C1 constraints [Far90, p.104] withk1 andk2 defined in (3)
for l = 0,1,2. To complete the proof, it remains to show that
(3) also holds forl = 3, i.e. establishC1 continuity (5) at the
central point.
If m = 4 thenk1 = 0 andk2 = 1/2 and (3) specializes to

bi
103 := 1

2

(

bi
112+bi−1

112

)

so that

(

bi+1
103+bi−1

103

)

/2 =
1
4

3

∑
i=0

bi
112.

Substituting bi
112 from (21) results in cancellation

of all terms with subscripts 121 and 211, leaving
(

bi+1
103+bi−1

103

)

/2 = b004, i.e. (5) form= 4.

If m= 3 theni −2 = i +1, k2 = 1/3 = k1 and (3) forl = 2
yieldsbi

103 = (bi
202+bi

112+bi−1
112)/3 so that

3(bi+1
103+bi−1

103 +bi
103) = bi+1

202+bi−1
202 +bi

202

+2(bi+1
112+bi−1

112 +bi
112).

Substitution ofbi
112 = 3b004/2− bi+2

202/2 according to (21)
yields (5) in the form

bi+1
103+bi−1

103 +bi
103 = 3b004.

The final case,m= 5 is checked analogously using symbolic
substitution and the relationcm = − k1

2k2
.

Smoothness across patches

Adjacent ordinary patches meet withC2 continuity since
we reproduce the standard bi-cubic B-spline in this case.
Since the shared cubic boundary of two adjacent patches
(Pm-patches, polar, or ordinary) is defined by unique coef-
ficients (v0, t0

0, t
1
1,v

1), C0 continuity is guaranteed and bi-
cubic ordinary patches (resp. polar patches) andPm-patches
match up exactly, and we need only verify tangent continuity
across.

Theorem 2 The surface corresponding to a polar configura-
tion isC1.

Proof Consider two adjacent polar patchesh and h with
h3i = h0i for i = 0,1,2,3 (Figure 14). We need only show
that

h3i = h0i =
1

2

(
h2i +h1i

)
. (23)

and that there exists a unique normal atv∗ := h03, the point
of parametric singularity. By specializing Section 5.1 to the
valencen = 4 ath30 = h00 this condition is satisfied fori =
0,1. It is trivially satisfied fori = 3 due to the singularity
at v∗. Since(h02− v∗) + (h32− v∗) = 2cn(h02− v∗) due
to (16), substituting (18) and lettingn be the valence atv∗

yields

1

2

(
h22+h12

)

=
1

2

(
2h32+h02+(cn−1)v∗

2+ cn
+

2h02+h32+(cn−1)v∗

2+ cn

)

=
1

2(2+ cn)

(
4h02+2cn(h02−v∗)+2v∗ +2(cn−1)v∗

)

= h02,

satisfying (23) fori = 2 as well.
Since all the vectors{hi2 − v∗}i=0,1,2,3 and {hi2 −
v∗}i=0,1,2,3 are co-planar by construction (16), (18), they de-
fine a unique tangent plane and normal atv∗.
Crease formula (19) uniformly scalesh22 and h12 toward
h02 without affecting their average, still satisfying theC1

constraints.

Since the polar construction (Figure 11) is identical to
the ordinary case for the two layers of Bézier control points
away from the polar vertex –hi0 andhi1 in Figure 14 – the
polar patch behaves identically to ordinary patches in regard
to first order continuity along the boundaryh00—h30. In par-
ticular, one can easily verify that these patches meetC1 with
ordinary patches using the simplified formulas forn = 4 at
the end of Section 5.1.

Theorem 3 Pm-patches meetG1 with ordinary patches (resp.
polar patches) and otherPm-patches.

Proof First, we consider the case where aPm-patchbi and
an ordinary patch (resp. polar patch)a share a boundary
bi(u,0) = a(0,u). In this case the valences at the endpoints
are bothn0 = 4= n1 and thereforecn0 = cn1 = 0, sn0 = sn1 =

submitted toEurographics Symposium on Geometry Processing (2008)

10 A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets

1, λn = 1/2, ωn = 4, σn = 1/2 and henceti
j = ei

j . We show

that the followingG1 condition holds:

(1−2cmu)∂1bi(u,0) = 2µ∂2bi(u,0)+∂1a(0,u) (11)

whereµ := 1− cm is defined in (20) and depends on them,
the number of sides of thePm-patch. By setting two polyno-
mials of maximal degree 3 equal, equation (11) holds if and
only if the four coefficients are equal. We need only verify
equality of the first two since the other two can be equally
verified by starting from the other endpoint. The first coef-
ficient equation (111) establishes that the per-vertex com-
putation generates a common tangent plane at the endpoint
u = 0: ∂1bi(0,0) = 2µ∂2bi(0,0)+∂1a(0,0). In terms of co-

e0
0

e0
1

v0

f0
0

f0
−1

301

310

211

e1
0

e1
1

v1

f1
0

f1
1

bi

a

Figure 15: G1 transition between a Pm-patchbi and a bi-
cubic patcha.

efficients (see Figure 15), since 8µk2 = 4,

2µ·4(bi
301−v0) = 8µ

(

(k1−1)v0 +k2(b
i
310+bi−1

130)
)

= 4

(
3
4
(e0

0 + e1
0−2v0)

)

= 3(e0
0 + e1

0)−6v0.

Therefore equation (111) simplifies to and is easily verified
as

3(e0
0−v0)

︸ ︷︷ ︸

∂1bi(0,0)

= 3(e0
0 + e0

1)−6v0

︸ ︷︷ ︸

2µ∂2bi(0,0)

−3(e0
1−v0)

︸ ︷︷ ︸

∂1a(0,0)

(111)

The second BB-coefficient of(1−2cmu)∂1bi(u,0) is

3
(2µ−1)(e0

0−v0)+2(e1
1− e0

0)

3

and of 2µ∂2bi(u,0) is (cf. Figure 15)

2µ·4(bi
211−bi

310)

= 8µ

(

e1
1− e0

0
4µ

+
2µ−1

8µ
(e0

0−v0)+3
f0− e0

0
8µ

)

= 2(e1
1− e0

0)+(2µ−1)(e0
0−v0)+3(f0− e0

0).

and so the second equality simplifies to and is easily checked
as

(2µ−1)(e0
0−v0)+2(e1

0− e0
0) = 2(e0

1− e0
0) (112)

+(2µ−1)(e0
0−v0)+3(f0− e0

0)−3(f0− e0
0).

If both facets are extraordinary withmb andma sides respec-
tively then with

ℓ0 := ξ0, ℓ1 := 2µ−ξ1, ξi := 1+ cni

ℓ(u) :=
(
(1−u)ℓ0 +uℓ1

)
, µ := 1− cmb , ν := 1− cma

the G1 constraints on the two corresponding sector patches
b anda are

ℓ(u)∂1b(u,0) = µ∂2b(u,0)+ν∂1a(0,u). (12)

Again we need only verify the first two coefficient equation
(121) and (122) of the four equivalent to (12). By (3) and

t0
0

t0
1

v0

f0
0

f0
−1

301

310

211

031 121

t1
0

t1
1

v1

f1
0

f1
1

b

a

Figure 16: G1 transition between sectors of a Pmb -patchb
and a Pma -patcha.

sincek1 = µ−1
µ andk2 = 1

2µ,

µ∂2b(0,0) = 4µ

(
µ−1

µ
v0 +

1
2µ

(bi
310+bi−1

130)

)

= 2(bi
310+bi−1

130 −2v0) = 2
3
4
(t0

1 + t0
0−2v0).

Since(t0
−1−v0)+(t0

1−v0) = 2cn0(t0
0−v0), (121) simplifies

to and is easily checked as

3(1+ cn0)(t0
0−v0)

︸ ︷︷ ︸

ℓ0∂1b(0,0)

= 3

(

t0
1 + t0

0
2

−v0

)

︸ ︷︷ ︸

µ∂2b(0,0)

+3

(

t0
−1 + t0

0

2
−v0

)

︸ ︷︷ ︸

ν∂1a(0,0)

= 3
1
2

(

2cn0(t0
0−v0)+2(t0

0−v0)
)

. (121)

Since the transversal terms involvingf0
0− f−1

0 in the expan-
sions ofµb211 andνa121 cancel, the second coefficient equa-
tion simplifies to and is easily checked as

6ℓ0(t
1
1− t0

0)+3ℓ1(t
0
0−v0)

= 12µ(b211−b310)+12ν(a121−b310)

= 6ξ0(t1
1− t0

0)+3(2µ−ξ1)(t0
0−v0). (122)

So the claim of smoothness is verified.

submitted toEurographics Symposium on Geometry Processing (2008)

A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets 11

Figure 17: Elliptic and saddle shapes withP3-patch (top two rows) andP5-patch (rest).

submitted toEurographics Symposium on Geometry Processing (2008)

12 A. Myles & T. Ni & J. Peters / Fast Parallel Construction of Smooth Surfaces from Meshes with Tri/Quad/Pent Facets

Figure 18: Elliptic and saddle shapes with 6- (top three rows) and 12-valent (rest) polar configurations.

submitted toEurographics Symposium on Geometry Processing (2008)

